

General Description

The LTP3456 family are the 500 mA LDO with auto discharge function, It uses an advanced CMOS process and a PMOSFET pass device to achieve high power supply rejection ratio (PSRR), low noise, low dropout, low ground current, fast start-up and excellent output accuracy.

The LTP3456 family are stable with a 1.0 μ F ceramic output capacitor, uses a precision voltage reference and feedback loop to achieve excellent Regulation and transient response.

The LTP3456 family offered in a small SOT23-5 and DFN1×1-4 package, which are ideal for small form factor portable equipment.

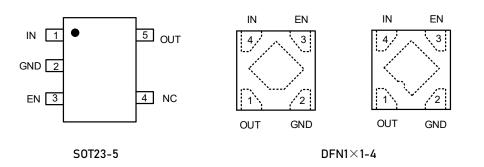
The LTP3456 family are available in standard fixed output voltages of 0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V, 2.8 V, 3.0 V, and 3.3 V.

Features and Benefits

- Wide Input Voltage Range from 1.9 V to 5.5 V
- Up to 500 mA Load Current
- Standard Fixed Output Voltage Options: 0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V, 2.8 V, 3.0 V and 3.3 V
- Very Low I_Q is 45 μA typical
- Low Dropout is typical 200 mV at 2.8 V and 300 mA Load
- Very High PSRR: 70 dB at 1 kHz
- Very Low Noise is 40 µV_{RMS} at 1.2 V output
- Excellent Load/Line Transient Response
- Package: S0T23-5, DFN1×1-4

Applications

- Smart Phones and Cellular Phones
- Digital Still Cameras
- Portable instruments

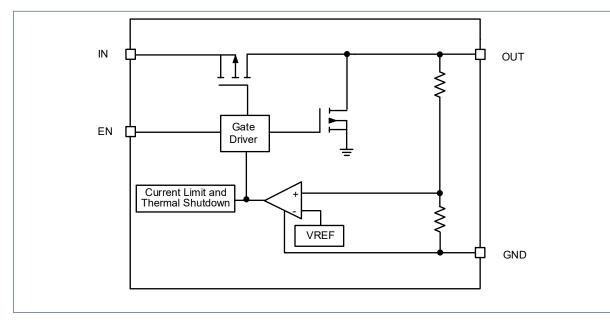


Ordering Information

Model Note1	Package	Ordering Number Note1	Package Option
LTP3456	S0T23-5	LTP3456-xxNYT5	Tape and Reel, 3 000
211 0400	DFN1×1-4	LTP3456-xxNYF4	Tape and Reel, 10 000

Note1: xx stands for output voltage, e.g. if xx = 18, the output voltage is 1.8 V; if xx = 30, the output voltage is 3.0 V. The device with suffix "N" is shutdown version with enable control input.


Pin Configurations (Top View)


Pin Function

	Package		
S0T23-5	DFN1×1-4	Symbol	Function
1	4	IN	Supply input pin.
2	2	GND	Ground.
3	3	EN	Enable control input, active high.
4	/	NC	No Connection.
5	1	OUT	Output pin.

Block Diagram

Functional Description

Input Capacitor

A 1 μ F ceramic capacitor is recommended to connect between V_{IN} and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both V_{IN} and GND.

Output Capacitor

An output capacitor is required for the stability of the LDO. The recommended output capacitance is from 0.47 μ F to 4.7 μ F, Equivalent Series Resistance (ESR) is from 5 m Ω to 100 m Ω , and temperature characteristics is X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to OUT and GND pins.

On/Off Input Operation

The LTP3456 is turned on by setting the EN pin high, and is turned off by pulling it low. If this feature is not used, the EN pin should be tied to IN pin to keep the regulator output on at all time.

Ultra Fast Start-up

After enabled, the LTP3456 is able to provide full power in as little as tens of microseconds, typically 80 µs. This feature will help load circuitry move in and out of standby mode in real time, eventually extend battery life for mobile phones and other portable devices.

Current-Limit Protection

When output current at the OUT pin is higher than current limit threshold or the OUT pin is short-circuit to GND, the current limit protection will be triggered and clamp the output current to approximately 500 mA to prevent over-current and to protect the regulator from damage due to overheating.

Thermal Shutdown

Thermal protection disables the output when the junction temperature rises to approximately +155°C, allowing the device to cool down. When the junction temperature reduces to approximately + 130°C the output circuitry is enabled again. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits the heat dissipation of the regulator, protecting it from damage due to overheating.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Unit
Input Voltage	V _{IN}	1.9	5.5	V
Output Current	I _{out}	0	500	mA
Operating Ambient Temperature	T _A	-40	85	°C
Effective Input Ceramic Capacitor Value ⁽¹⁾	C _{IN}	0.47	4.7	μF
Effective Output Ceramic Capacitor Value ⁽¹⁾	C _{OUT}	0.47	4.7	μF
Input and output Capacitor Equivalent Series Resistance(ESR)	ESR	5	100	mΩ

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Unit
IN Voltage		V _{IN}	-0.3	7	V
Other Pin Voltage			-0.3	V _{IN} + 0.3	V
Maximum Load Curre	nt			500	mA
Package Thermal	DFN1×1-4			180	°C/W
Resistance –	S0T23-5			260	°C/W
Junction Temperature		T,		150	°C
Storage Temperature		T _{STG}	-65	150	°C
Lead Temperature(So	ldering, 10 sec)	TL		300	°C

NOTE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Caution:

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. LINEARIN recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

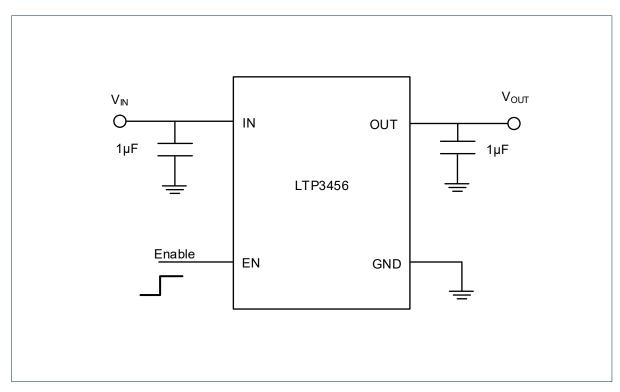
LINEARIN reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact LINEARIN sales office to get the latest datasheet.

Electrical Characteristics

P-5

 $T_{\rm A}$ = +25°C, $V_{\rm IN}$ = $V_{\rm EN}$ = $V_{\rm OUT}$ + 1 V unless otherwise noted.

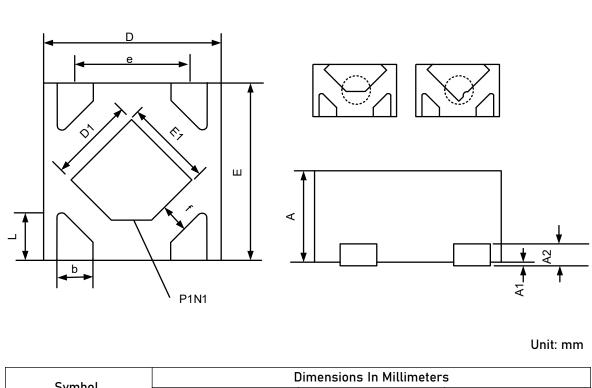
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage Range	V _{IN}		1.9		5.5	۷
Regulated Output Voltage	ΔV_{OUT}	I _{0UT} = 1 mA, -40°C≤ T _A ≤85°C	-2		2	%V _{out}
Line Regulation	R_{egLINE}	V_{IN} = V_{OUT} +1 V to 5.5 V, I_{OUT} = 10 mA		0.03	0.2	%V _{out}
Load Regulation	R_{egLOAD}	I _{0UT} = 0 mA to 300 mA		20	40	mV
Soft-start Time	T _{SS}	From enable to power on		80		μS
Short Current limit	ISHORT	V _{OUT} = 0 V		70		mA
DC Supply Quiescent Current	I _{Q-ON}	Active mode: V _{EN} =V _{IN}		45	70	μA
DC Supply Shutdown Current	I _{Q-OFF}	V _{EN} = 0 V		0.01	1	μΑ
		V _{OUT} = 1.2 V, I _{OUT} = 300 mA		380	480	mV
		V _{OUT} = 1.5 V, I _{OUT} = 300 mA		300	400	mV
		V _{OUT} = 1.8 V, I _{OUT} = 300 mA		220	340	mV
Dropout Voltage	V _{DROP}	V _{OUT} = 2.5 V, I _{OUT} = 300 mA		210	330	mV
		V _{OUT} = 2.8 V, I _{OUT} = 300 mA		200	320	mV
		V _{OUT} = 3.0 V, I _{OUT} = 300 mA		190	310	mV
		V _{OUT} = 3.3 V, I _{OUT} = 300 mA		180	300	mV
Current Limit	I _{LMT}	R _{LOAD} = 1 Ω	300			mA
Device events reisetion rotion		f = 1 kHz, C _{oυτ} = 1 μF, I _{oυτ} = 20 mA		70		dB
Power supply rejection ration	PSRR	f = 10 kHz, C _{oυτ} = 1 μF, I _{oυτ} = 30 mA		65		dB
Output Naise Valtage		BW = 10 Hz to 100 kHz, I_{OUT} = 200 mA, V_{OUT} = 2.8 V, C_{OUT} = 1 μ F		60		μV_{RMS}
Output Noise Voltage	e _N	BW = 10 Hz to 100 kHz, I _{ουτ} = 200 mA, V _{ουτ} = 1.2 V, C _{ουτ} = 1 μF		40		μV_{RMS}
EN Low Threshold	V _{IL}			0.3		۷
EN High Threshold	V _{IH}		1.2			V
EN Pin Input current	I _{EN}	V _{EN} = 0 V		0	0.1	μA
EN pull-down resistance	T _{TSD}		0.8	1	1.3	mΩ
Output resistance of auto discharge at off state	RLow	E _N = 0 V, V _{IN} = 4 V		90		Ω
Thermal shutdown threshold	T _{TSD}	T _J rising		150		°C
Thermal shutdown hysteresis	T _{HYS}	T _J falling from shutdown		20		°C


Note: Production test at + 25°C. Specifications over the temperature range are guaranteed by design and characterization.

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

LTP3456 High PSRR, 500 mA, LD0

Application Circuits

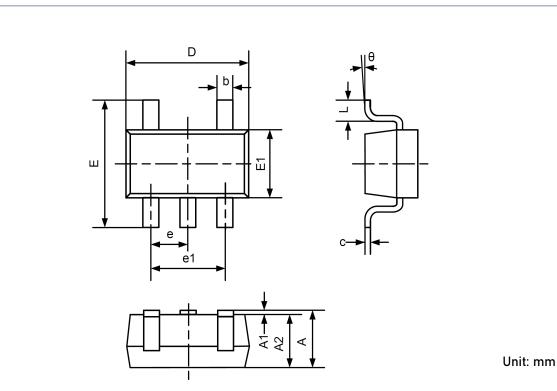


LTP3456 High PSRR, 500 mA, LDO

Package Dimension

DFN1×1-4

Symbol	C)imensions In Millimeters	
Symbol	MIN	MOD	MAX
Α	0.450	0.500	0.550
A1	0.000	0.025	0.050
A2		0.125REF	
D	0.950	1.000	1.050
D1	0.380	0.480	0.580
E	0.950	1.000	1.050
E1	0.380	0.480	0.580
b	0.150	0.200	0.250
е		0.650BSC	
f	0.190	0.195	0.200
L	0.150	0.250	0.350



LTP3456 High PSRR, 500 mA, LDO

Package Dimension

S0T23-5

Symbol	Dimensions In Millimeters		
Symbol	MIN	MAX	
Α	0.700	1.250	
A1	0.000	0.100	
A2	0.700	1.150	
b	0.350	0.500	
C	0.080	0.200	
D	2.820	3.020	
E	2.650	2.950	
E1	1.600	1.700	
е	0.95	OBSC	
e1	1.800	2.000	
L	0.300	0.600	
Θ	0°	8°	

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

