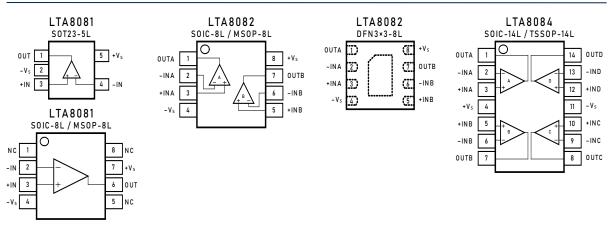
P-1

LTA8081, LTA8082, LTA8084 48 V, 10 MHz, Low Noise, Precision Operational Amplifiers

General Description

The LTA8081, LTA8082 and LTA8084 (LTA808x) are a family of low power, 48 V wide supply voltage, rail-to-rail output, precision operational amplifiers capable of operating on supplies ranging from +4.5 V (\pm 2.25 V) to +48 V (\pm 24 V). This new generation of high-voltage CMOS operational amplifiers, in conjunction with the LTA809x, LTA807x and LTA806x, provide a family of bandwidth, noise, and power options to meet the needs of a wide variety of applications. The LTA808x devices offer outstanding dc precision and ac performance, including low offset (\pm 75 µV typically), low offset drift (\pm 1.5 µV/°C typically), 10 MHz bandwidth, and 8 nV/√Hz input voltage noise density at 10 kHz. Unique features such as differential input-voltage range to the negative supply rail, high output current (\pm 45 mA), high capacitive load drive of up to 1 nF, and high slew rate (9 V/µs) make the LTA808x high-performance operational amplifiers for high-voltage industrial applications.

The robust design of the LTA808x family provides ease-of-use to the circuit designer: integrated RF/EMI rejection filter, no phase reversal in overdrive conditions, and high electro-static discharge (ESD) protection. The LTA808x are optimized for operation at voltages from +4.5 V (\pm 2.25 V) to +48 V (\pm 24 V) over the extended temperature range of -40 °C to +125 °C.


Features and Benefits

- Wide Supply: ±2.25 V to ±24 V, 4.5 V to 48 V
- Low Offset Voltage: ±75 μV Typically
- Low Offset Voltage Drift: ±1.5 μV/°C
- High Common-Mode Rejection: 116 dB
- Gain Bandwidth: 10 MHz
- Slew Rate: 9 V/µs
- Low Noise: 8 nV/√Hz at 10 kHz
- Low Bias Current: ±10 pA
- Rail-to-Rail Output

Applications

- Tracking Amplifier in Power Modules
- Merchant Power Supplies
- High-Side and Low-Side Current Sensing
- High Precision Comparator
- Battery-Powered Instruments
- Test and Measurement Equipment
- Multiplexed Data-Acquisition Systems
- Programmable Logic Controllers

Pin Configuration (Top View)

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation.

© Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

Pin Description

Symbol	Description
-IN	Inverting input of the amplifier. The voltage range is from V $_{\rm S^{-}}$ to V $_{\rm S^{+}}$ – 1.5 V.
+IN	Non-inverting input of the amplifier. This pin has the same voltage range as –IN.
+V _S	Positive power supply. The voltage is from 4.5 V to 48 V. Split supplies are possible as long as the voltage between V _{S+} and V _{S-} is from 4.5 V to 48 V.
-V _S	Negative power supply. It is normally tied to ground. It can also be tied to a voltage other than ground as long as the voltage between $V_{S^{+}}$ and $V_{S^{-}}$ is from 4.5 V to 48 V.
OUT	Amplifier output.
NC	No connection

Ordering Information (1)

Type Number	Package Name	Package Quantity	Eco Class ⁽²⁾	Marking Code ⁽³⁾
LTA8081XT5/R6	S0T23-5L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	H81
LTA8081XS8/R8	SOIC-8L	Tape and Reel, 4 000	Green (RoHS & no Sb/Br)	HV-81
LTA8081XV8/R6	MSOP-8L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	HV81
LTA8082XS8/R8	SOIC-8L	Tape and Reel, 4 000	Green (RoHS & no Sb/Br)	HV-82
LTA8082XV8/R6	MSOP-8L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	HV82
LTA8082XF8/R10	DFN3x3-8L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	HV82
LTA8084XS14/R5	SOIC-14L	Tape and Reel, 2 500	Green (RoHS & no Sb/Br)	HV-84
LTA8084XT14/R6	TSS0P-14L	Tape and Reel, 3 000	Green (RoHS & no Sb/Br)	HV-84

(1) Please contact to your Linearin representative for the latest availability information and product content details.

(2) Eco Class - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & Halogen Free).

(3) There may be multiple device markings, a varied marking character of "x", or additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

Limiting Value – In accordance with the Absolute Maximum Rating System (IEC 60134).

Parameter	Absolute Maximum Rating
Supply Voltage, V_{S+} to V_{S-}	60 V
Signal Input Terminals: Voltage, Current	$-V_{s}$ - 0.3 V to +V _s + 0.3 V, ±10 mA
Output Short-Circuit	Continuous
Storage Temperature Range, T _{stg}	–65 to +150 ℃
Junction Temperature, T _J	150 ℃
Lead Temperature Range (Soldering 10 sec)	260 ℃

ESD Rating

Parameter	ltem	Value	Unit
Electrostatic	Human body model (HBM), per MIL-STD-883J / Method 3015.9 ⁽¹⁾	2 000	- M
Discharge Voltage	Charged device model (CDM), per ESDA/JEDEC JS-002-2014 $^{(2)}$	2 000	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible if necessary precautions are taken.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible if necessary precautions are taken.

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.

Linearin and designs are registered trademarks of Linearin Technology Corporation.

[©] Copyright Linearin Technology Corporation. All Rights Reserved.

All other trademarks mentioned are the property of their respective owners.

Electrical Characteristics

 V_{S} = 4.5 V to 48 V, T_{A} = +25 °C, V_{CM} = V_{OUT} = V_{S} /2, and R_{L} = 10 k Ω connected to V_{S} /2, unless otherwise noted. Boldface limits apply over the specified temperature range, T_{A} = -40 °C to +125 °C.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
OFFSET VOLTAGE	•				•		
Input offset voltage	V _{os}			±75	±350	μV	
Offset voltage drift	V _{os} TC	$T_A = -40$ to +125 °C		±1.5		µV/⁰C	
Power supply	PSRR	$V_{\rm S}$ = 4.5 to 48 V, $V_{\rm CM}$ = 0.1 V		3.5		- μV/V	
rejection ratio	PSKK	T _A = -40 to +125 °C 10				- μν/ν	
INPUT BIAS CURRENT							
				10		_	
Input bias current	I _B	T _A = +85 ℃		150		pА	
		T _A = +125 °C		600		-	
Input offset current	I _{os}			5		pА	
NOISE							
Input voltage noise	V _n	f = 0.1 to 10 Hz		4		μV_{P-P}	
Input voltage noise	0	f = 1 kHz	10			– nV/√Hz	
density	e _n	f = 10 kHz		8		114/ 112	
Input current noise density	I _n	f = 1 kHz		5		fA/√Hz	
INPUT VOLTAGE							
Common-mode voltage range	V _{CM}		-V _s		+V _S -1.5	v	
	01455	$V_{\rm S}$ = 40 V, $V_{\rm CM}$ = 0 to 38 V		116		_	
Common-mode		V_{CM} = 0.1 to 38 V, T_{A} = -40 to +125 $^{\circ}\text{C}$	$_{CM}$ = 0.1 to 38 V, T _A = -40 to +125 °C 103			— dB	
rejection ratio	CMRR	$V_{\rm S}$ = 5 V, $V_{\rm CM}$ = 0 to 3.5 V		96			
		V_{CM} = 0.1 to 3 V, T_{A} = –40 to +125 $^{\circ}\text{C}$		84		-	
INPUT IMPEDANCE							
Input capacitance	c	Differential		2 3.5		– pF	
input capacitance	C _{IN}	Common mode				μг	
OPEN-LOOP GAIN							
		$V_{\rm S}$ = 40 V, $V_{\rm 0}$ = 0.1 to 39.9 V		130		_	
Open-loop voltage	٨	$T_{A} = -40$ to +125 °C		120		- dB	
gain	A _{VOL}	$V_{\rm S}$ = 5 V, $V_{\rm 0}$ = 0.1 to 4.9 V		122		- ub	
		$T_{A} = -40$ to +125 °C		112			
FREQUENCY RESPONS	SE						
Gain bandwidth product	GBW			10		MHz	
Slew rate	SR V _S = 40 V, G = +1, 10 V step			9		V/µs	
Total harmonic distortion + noise	THD+N	G = +1, f = 1 kHz, V ₀ = 3 V _{RMS}		0.0002		%	
•		To 0.1%, V _s = 40 V, G = +1, 5 V step		1.6			
Settling time	t _s	To 0.01%, V _s = 40 V, G = +1, 5 V step		3.5		μs	
Overload recovery time	t _{OR}	V _{IN} × Gain > V _S		0.6		μs	

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation.

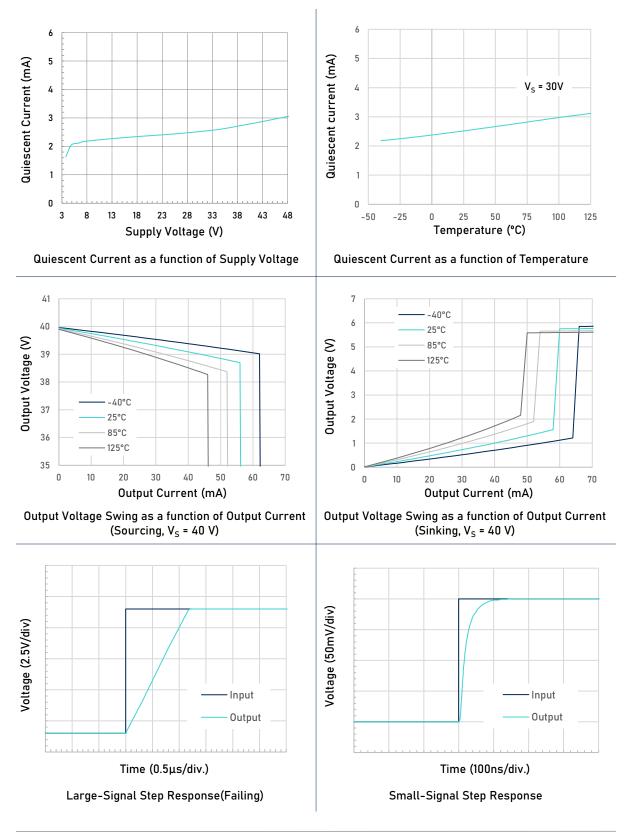
© Copyright Linearin Technology Corporation. All Rights Reserved.

Electrical Characteristics (continued)

 V_{s} = 4 V to 48 V, T_{A} = +25 °C, V_{CM} = V_{OUT} = $V_{s}/2$, and R_{L} = 10 k Ω connected to $V_{s}/2$, unless otherwise noted. Boldface limits apply over the specified temperature range, T_{A} = -40 °C to +125 °C.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
OUTPUT							
	V	V_{S} = ± 20 V, R_{L} = 10 k Ω		+V _S -95			
High output voltage swing	V _{он}	V_{S} = ± 20 V, R_{L} = 2 k Ω		+V _s -255		- mV	
	V	V_{S} = ± 20 V, R_{L} = 10 $k\Omega$		-V _S +60		m\/	
Low output voltage swing	V _{OL}	V_{S} = ± 20 V, R_{L} = 2 k Ω		-V _s +240		— mV	
Short-circuit current	I _{sc}			±45		mA	
POWER SUPPLY							
Operating supply voltage	Vs	T _A = −40 to +125 °C	4.5		48	۷	
Quiescent current (ner emplifier)	1	V _s = 5 V		2.05		m۸	
Quiescent current (per amplifier)	Ι _Q	V _s = 40 V		2.75		– mA	
THERMAL CHARACTERISTICS							
Operating temperature range	T _A		-40		+125	°C	
		SOT23-5L		190			
	θ _{JA}	MSOP-8L		201		-	
Package Thermal Resistance		SOIC-8L		125		°C/W	
		TSS0P-14L		112		-	
		SOIC-14L		115			

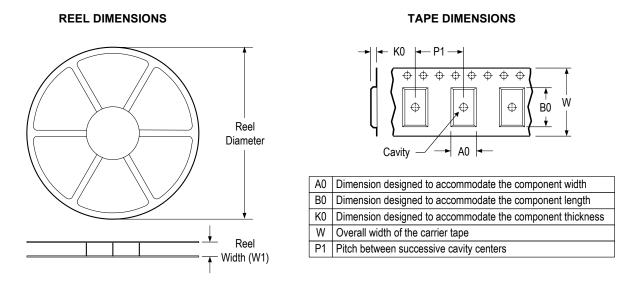
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

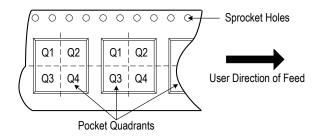


INEARIN

Typical Performance Characteristics

P-5


At T_A = +25 °C, V_{CM} = V_S/2, and R_L = 10 k Ω connected to V_S/2, unless otherwise noted.

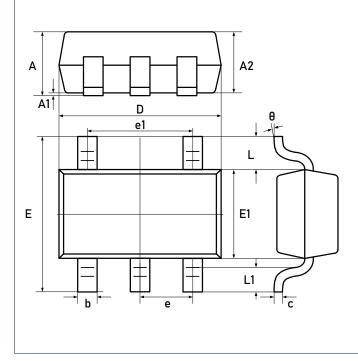

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation.

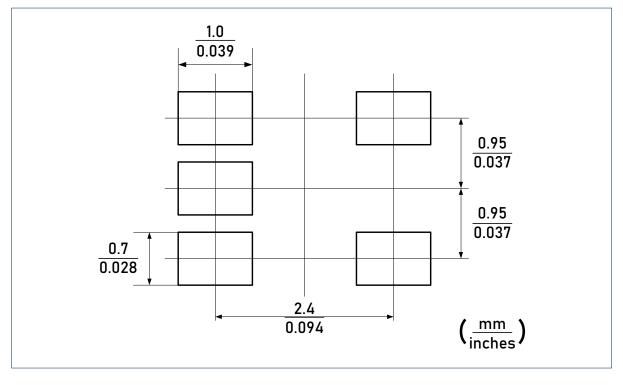
© Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

Tape and Reel Information

QUADRANT ASSIGNMENTS FOR PIN 1 ORIETATION IN TAPE

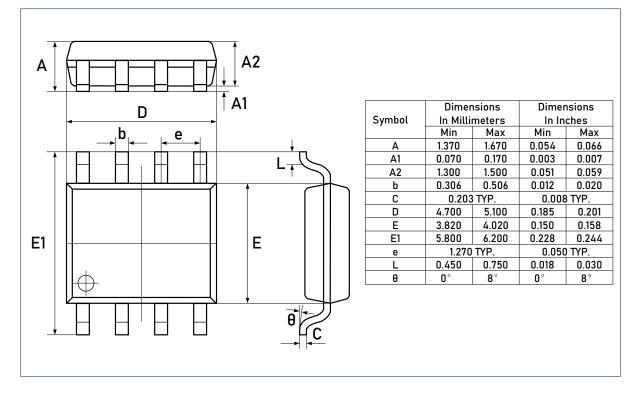
* All dimensions are nominal

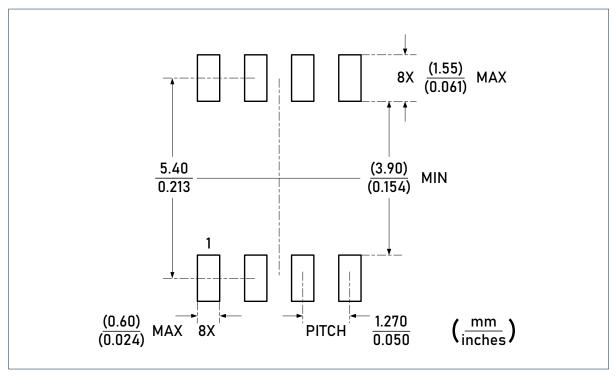

Device	Package Type	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin 1 Quadrant
LTA8081XT5/R6	SOT23	5	3 000	178	9.0	3.3	3.2	1.5	4.0	8.0	Q3


Package Outlines

DIMENSIONS, SOT23-5L

	Dimer	Dimensions		Dimensions	
Symbol	In Milli	meters	In Inches		
-	Min	Max	Min	Max	
Α	-	1.25	-	0.049	
A1	0.04	0.10	0.002	0.004	
A2	1.00	1.20	0.039	0.047	
b	0.33	0.41	0.013	0.016	
с	0.15	0.19	0.006	0.007	
D	2.820	3.02	0.111	0.119	
E1	1.50	1.70	0.059	0.067	
E	2.60	3.00	0.102	0.118	
е	0.95	BSC	0.037	BSC	
e1	1.90	1.90 BSC		BSC	
L	0.60 REF		0.024	REF	
L1	0.30	0.60	0.012	0.024	
θ	0°	8°	0 °	8°	

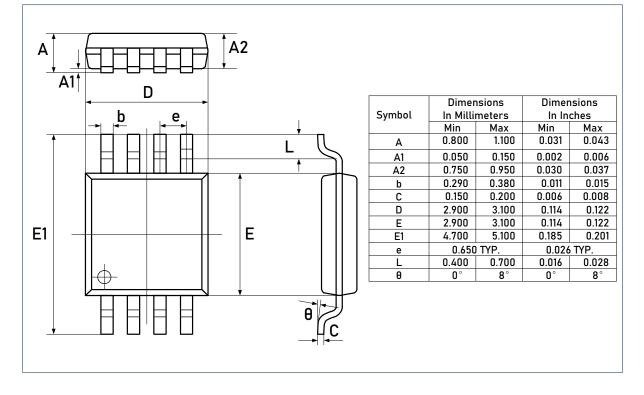

RECOMMENDED SOLDERING FOOTPRINT, SOT23-5L



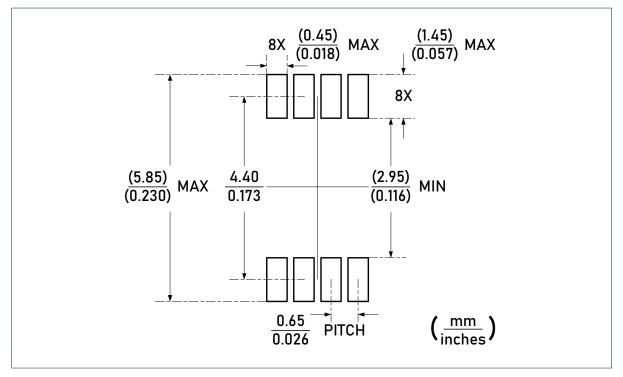
Package Outlines (continued)

DIMENSIONS, SOIC-8L

RECOMMENDED SOLDERING FOOTPRINT, SOIC-8L


CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved.

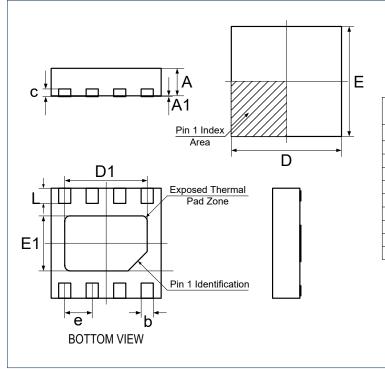
İNEARIN


LTA8081, LTA8082, LTA8084 48 V, 10 MHz, Low Noise, Precision Operational Amplifiers

Package Outlines (continued)

DIMENSIONS, MSOP-8L

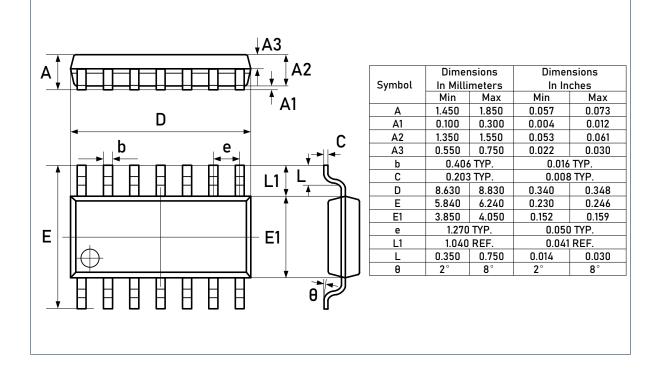
RECOMMENDED SOLDERING FOOTPRINT, MSOP-8L



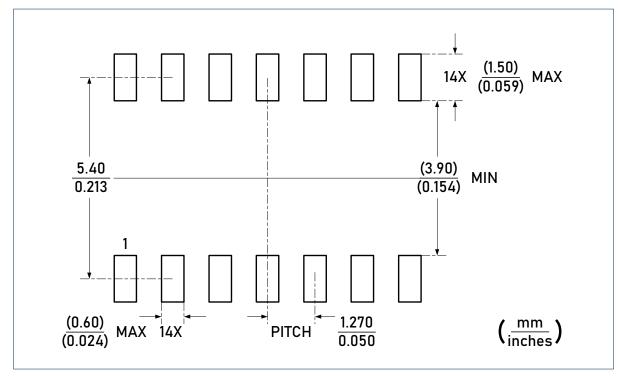
P-9

Package Outlines (continued)

DIMENSIONS, DFN3x3-8L


Symbol	Millimeters					
Symbol	Min.	Nom.	Max.			
Α	0.70	0.75	0.80			
A1	-	0.02	0.05			
b	0.255	0.28	0.305			
С	0.19	0.21	0.23			
D	2.90	3.00	3.10			
D1	2.25	2.30	2.35			
E	2.90	3.00	3.10			
E1	1.45	1.50	1.55			
е	0.625	0.65	0.675			
L	0.25	0.30	0.35			

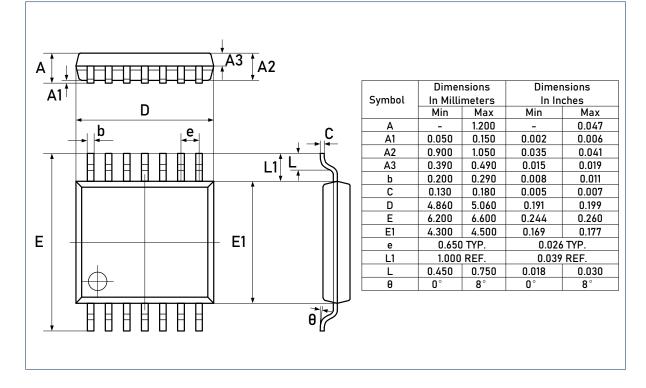
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.



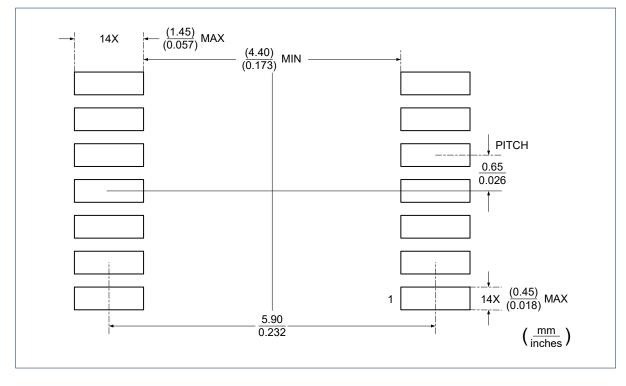
Package Outlines (continued)

DIMENSIONS, SOIC-14L

RECOMMENDED SOLDERING FOOTPRINT, SOIC-14L


CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation.

© Copyright Linearin Technology Corporation. All Rights Reserved.



Package Outlines (continued)

DIMENSIONS, TSSOP-14L

RECOMMENDED SOLDERING FOOTPRINT, SOIC-14L

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved.

P-13

LTA8081, LTA8082, LTA8084 48 V, 10 MHz, Low Noise, Precision Operational Amplifiers

Important Notice

Linearin is a global fabless semiconductor company specializing in advanced high-performance highquality analog/mixed-signal IC products and sensor solutions. The company is devoted to the innovation of high performance, analog-intensive sensor front-end products and modular sensor solutions, applied in multi-market of medical & wearable devices, smart home, sensing of IoT, intelligent industrial & smart factory (industrie 4.0), and automotives. Linearin's product families include widely-used standard catalog products, solution-based application specific standard products (ASSPs) and sensor modules that help customers achieve faster time-to-market products. Go to <u>http://www.linearin.com</u> for a complete list of Linearin product families.

For additional product information, or full datasheet, please contact with the Linearin's Sales Department or Representatives.

