### **General Description**

The LTA321/LTA323/LTA2904/LTA2902 are single-, dual-, quad- channel amplifiers that feature 300  $\mu$  A quiescent current per Amplifier, a wide range of supply voltages from 3 V to 36 V helps to implement in a wide variety of applications where require critical response time, power-sensitive, high-voltage. It also provides low offset ( $\pm$  3 mV), Wide CMVR (Common-mode voltage range) from V<sub>s-</sub> to V<sub>s+</sub> -1.5 V, 105 dB high Open-loop voltage gain. 40 mA current output and high slow rate (0.98 V/µs) make LTA321/LTA323/LTA2904/LTA2902 very suitable for high voltage industrial applications.

The LTA321 and LTA323 (Single) is available in SOT23-5L package. The LTA2904 (Dual) is offered in TSSOP-8L, SOIC-8L and MSOP-8L packages, The LTA2902 (Quad) is offered in SOIC-14L, TSSOP-14L and DIP-14L packages. All devices are rated over  $-40^{\circ}$ C to  $+125^{\circ}$ C extended industrial temperature range.

### **Features and Benefits**

- **a** 3 V to 36 V Single supply or  $\pm$ 1.5 V to  $\pm$ 18 V Dual supply
- Low quiescent current: 300 µ A / Amplifier
- Gain Bandwidth: 1.3 MHz
- Slew Rate: 0.98 V/µs
- Very Low Noise: 20 nV / v Hz at 1kHz
- Common-mode input voltage range includes V<sub>s-</sub>
- Low offset voltage: ± 3 mV
- -40°C to 125°C Operation temperature
- Rail-to-Rail Output
- Drop in replacement with 2904, 2902 family products

## **Applications**

- Industrial Application
- Solar Inverter
- White Goods
- Battery Management System
- Power supplies



### Table of Content

| General Description<br>Features and Benefits                                      | . 1 |
|-----------------------------------------------------------------------------------|-----|
| Features and Benefits                                                             | . 1 |
| Applications                                                                      | . 1 |
| Table of Content                                                                  | .2  |
| Revision History                                                                  | .2  |
| Ordering Information <sup>(1)</sup>                                               | .3  |
| Pin Configuration (Top View)                                                      | .3  |
| Limiting Value– In accordance with the Absolute Maximum Rating System (IEC 60134) | .6  |
| ESD Ratings                                                                       | . 6 |
| Thermal Information                                                               | .6  |
| Electrical Characteristics                                                        | .7  |
| Typical Characteristics                                                           | .8  |
| Detailed Description                                                              | 10  |
| Typical Application Circuits                                                      | 11  |
| Tape and Reel Information                                                         | 12  |
| Package Outlines                                                                  |     |
| Important Notice                                                                  | 20  |

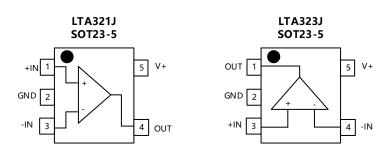
## **Revision History**

#### Version FN1624-29.0 (Jul,2024)

• Initial version.



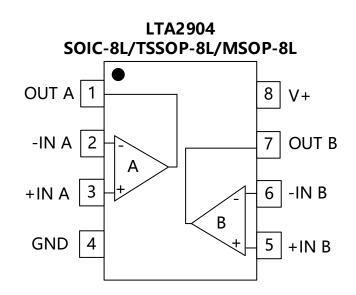
### Ordering Information<sup>(1)</sup>


| Part Number    | Package Type | Quantity | ECO Class <sup>(2)</sup> | Mark Code <sup>(3)</sup> |
|----------------|--------------|----------|--------------------------|--------------------------|
| LTA321JXT5/R6  | S0T23-5L     | 3 000    | Green (RoHS & no Sb/Br)  | G21                      |
| LTA323JXT5/R6  | S0T23-5L     | 3 000    | Green (RoHS & no Sb/Br)  | G23                      |
| LTA2904XS8/R8  | SOIC-8L      | 4 000    | Green (RoHS & no Sb/Br)  | G2904                    |
| LTA2904XV8/R6  | MSOP-8L      | 3 000    | Green (RoHS & no Sb/Br)  | G2904                    |
| LTA2904XT8/R6  | TSSOP-8L     | 3 000    | Green (RoHS & no Sb/Br)  | G2904                    |
| LTA2902XS14/R5 | SOIC-14L     | 2 500    | Green (RoHS & no Sb/Br)  | G2902                    |
| LTA2902XT14/R6 | TSSOP-14L    | 3 000    | Green (RoHS & no Sb/Br)  | G2902                    |
| LTA2902XD14/R2 | DIP-14L      | 1 000    | Green (RoHS & no Sb/Br)  | G2902                    |

(1) Please contact to your Linearin representative for the latest availability information and product content details.

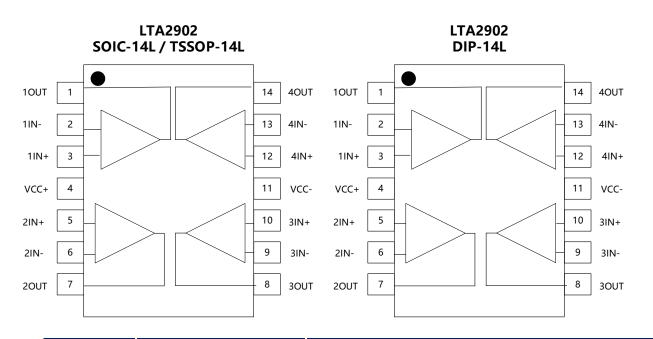
(2) Eco Class - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & Halogen Free).

(3) There may be multiple device markings, a varied marking character of "x", or additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.


### Pin Configuration (Top View)



| Symbol | LTA321J  | LTA323J | Description           |  |  |  |
|--------|----------|---------|-----------------------|--|--|--|
|        | SOT23-5L |         | Description           |  |  |  |
| -IN    | 3        | 4       | Inverting input       |  |  |  |
| +IN    | 1        | 3       | Non-inverting input   |  |  |  |
| OUT    | 4        | 1       | Output                |  |  |  |
| GND    | 2        | 2       | Ground                |  |  |  |
| V+     | 5        | 5       | Positive power supply |  |  |  |


CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.





|        | LTA2904               |                                |
|--------|-----------------------|--------------------------------|
| Symbol | SOIC-8L/MSOP8/TSSOP-8 | Description                    |
| -IN A  | 2                     | Inverting input, channel A     |
| +IN A  | 3                     | Non-inverting input, channel A |
| -IN B  | 6                     | Inverting input, channel B     |
| +IN B  | 5                     | Non-inverting input, channel B |
| OUT A  | 1                     | Output, channel A              |
| OUT B  | 7                     | Output, channel B              |
| GND    | 4                     | Ground                         |
| V+     | 8                     | Positive power supply          |





|        | LTA2902                          |                                |  |  |  |  |
|--------|----------------------------------|--------------------------------|--|--|--|--|
| Symbol | S0IC-14L /                       | Description                    |  |  |  |  |
|        | TSSOP-14L/PDIP-14L               |                                |  |  |  |  |
| 1 IN-  | 2                                | Inverting input, channel 1     |  |  |  |  |
| 1 IN+  | 3                                | Non-inverting input, channel 1 |  |  |  |  |
| 1 OUT  | 1                                | Output, channel 1              |  |  |  |  |
| GND    | 11                               | Ground                         |  |  |  |  |
| 2 IN-  | N- 6 Inverting input, channel 2  |                                |  |  |  |  |
| 2 IN+  | 5 Non-inverting input, channel 2 |                                |  |  |  |  |
| 2 OUT  | 7                                | Output, channel 2              |  |  |  |  |
| V+     | 4                                | Positive power supply          |  |  |  |  |
| 3 IN-  | 9                                | Inverting input, channel 3     |  |  |  |  |
| 3 IN+  | 10                               | Non-inverting input, channel 3 |  |  |  |  |
| 3 OUT  | 8                                | Output, channel 3              |  |  |  |  |
| 4 IN-  | 13                               | Inverting input, channel 4     |  |  |  |  |
| 4 IN+  | 12                               | Non-inverting input, channel 4 |  |  |  |  |
| 4 OUT  | 14                               | Output, channel 4              |  |  |  |  |

### Limiting Value – In accordance with the Absolute Maximum Rating System (IEC 60134)

| Parameter                                   | Absolute Maximum Rating |  |  |  |  |
|---------------------------------------------|-------------------------|--|--|--|--|
| Supply Voltage, $V_{s_{*}}$ to $V_{s_{-}}$  | ± 20 V                  |  |  |  |  |
| Differential input voltage <sup>(1)</sup>   | ± 20 V                  |  |  |  |  |
| Input voltage range (either input)          | ± 20 V                  |  |  |  |  |
| Input current                               | 40 mA                   |  |  |  |  |
| Storage Temperature Range, T <sub>sta</sub> | −65 °C to +150 °C       |  |  |  |  |
| Junction Temperature, T <sub>J</sub>        | 150 °C                  |  |  |  |  |

(1) The differential input voltage is the value on IN+ with respect to IN-.

### ESD Ratings

| Parameter                                                                      | Level | UNIT |
|--------------------------------------------------------------------------------|-------|------|
| Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 <sup>(1)</sup>              | 5 000 | ۷    |
| Charged device model (CDM), per JEDEC specification JESD22-C101 <sup>(2)</sup> | 2 000 | V    |

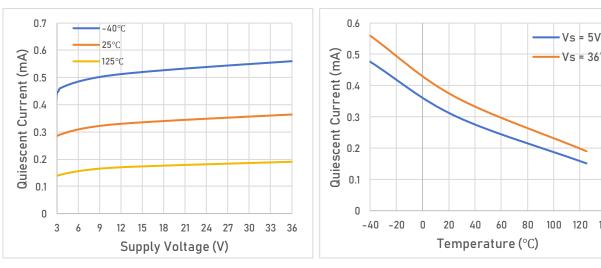
 JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible if necessary precautions are taken.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible if necessary precautions are taken.

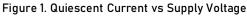
### **Thermal Information**

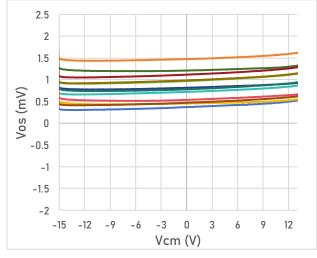
|     | Thermal Metric     | Package   |     | Unit |
|-----|--------------------|-----------|-----|------|
|     |                    | SOT23-5L  | 190 |      |
|     |                    | SOIC-8L   | 125 |      |
|     | Thermal Resistance | TSSOP-8L  | 160 |      |
| θιΑ |                    | MSOP-8L   | 201 | °C/W |
|     |                    | SOIC-14L  | 115 |      |
|     |                    | TSSOP-14L | 112 |      |
|     |                    | DIP-14L   | 65  |      |

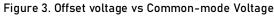



# **Electrical Characteristics**

| Symbol               | Parameter                            | Conditions                                                                     | Min. | Тур.                 | Max.                 | Unit              |  |  |
|----------------------|--------------------------------------|--------------------------------------------------------------------------------|------|----------------------|----------------------|-------------------|--|--|
| OFFSET V             | OLTAGE                               |                                                                                |      |                      |                      |                   |  |  |
|                      |                                      |                                                                                |      | $\pm$ 0.5            | ±3                   | mV                |  |  |
| Vos                  | Input offset voltage                 | T <sub>A</sub> = -40 to +125°C                                                 |      | ·                    | ±4                   | •                 |  |  |
| Vos TC               | Offset voltage drift                 | T <sub>A</sub> = -40 to +125°C                                                 |      | ±6                   |                      | μV/°C             |  |  |
|                      | Power supply                         | •                                                                              | 90   | 105                  |                      |                   |  |  |
| PSRR rejection ratio |                                      | T <sub>A</sub> = −40 to +125 °C                                                | •    | 102                  | •                    | - dB              |  |  |
| INPUT BI             | AS CURRENT                           |                                                                                |      |                      |                      |                   |  |  |
| 1                    | Innut bigg gurrant                   |                                                                                |      | 20                   |                      | m A               |  |  |
| В                    | Input bias current                   | T <sub>A</sub> = -40 to +125°C                                                 | •    | 40                   | •                    | - nA              |  |  |
| I                    | Input offect current                 |                                                                                | •    | 5                    |                      | nA                |  |  |
| los                  | Input offset current                 | T <sub>A</sub> = -40 to +125°C                                                 |      | 10                   |                      |                   |  |  |
| NOISE                |                                      |                                                                                |      |                      |                      |                   |  |  |
| Vn                   | Input voltage noise                  | f = 0.1 to 10 Hz                                                               | +    | 4.5                  |                      | μV <sub>P-P</sub> |  |  |
| en                   | Input voltage noise<br>density       | f = 1 kHz                                                                      |      | 20                   |                      | nV/ √ Hz          |  |  |
| INPUT VO             | LTAGE                                |                                                                                |      |                      |                      |                   |  |  |
| Vсм                  | Common-mode<br>voltage range         |                                                                                | Vs-  |                      | V <sub>s+</sub> -1.5 | V                 |  |  |
|                      | · ·                                  | $V_{\rm S}$ = ±15 V, V <sub>CM</sub> = -10 to +10 V                            |      | 104                  | •                    | •                 |  |  |
| CMRR                 | Common-mode<br>rejection ratio       | V <sub>CM</sub> = -15 to 13.5 V,<br>T <sub>A</sub> = -40 to +125 °C            | 65   | 102                  |                      | dB                |  |  |
| OPEN-LO              | OP GAIN                              |                                                                                |      |                      |                      |                   |  |  |
| Avol                 | Open-loop voltage                    | $V_{\text{S}}$ = 15 V, $V_{0}$ = 1 to 10 V, $R_{\text{L}}$ = 2k $\Omega$ to V- |      | 110                  |                      | ⊣ dB              |  |  |
|                      | gain                                 | T <sub>A</sub> = −40 to +125 °C                                                |      | 105                  |                      | - 45              |  |  |
| FREQUEN              | ICY RESPONSE                         |                                                                                |      |                      |                      |                   |  |  |
| GBW                  | Gain bandwidth<br>product            |                                                                                |      | 1.3                  |                      | MHz               |  |  |
| SR                   | Slew rate                            | Vs = 36 V, G = +1, 10 V step                                                   | •    | 0.98                 |                      | V/µs              |  |  |
| THD+N                | Total harmonic<br>distortion + noise | G = +1, f = 1 kHz, V <sub>0</sub> = 3 V <sub>RMS</sub>                         |      | 0.00398              |                      | %                 |  |  |
| OUTPUT               |                                      |                                                                                |      |                      |                      |                   |  |  |
| V                    | High output voltage                  | $V_{s}$ = $~\pm 18$ V, $R_{L}$ = 10 $k\Omega$                                  |      | V <sub>S+</sub> -100 |                      |                   |  |  |
| Vон                  | swing                                | $V_{s}$ = $\pm$ 18 V, R <sub>L</sub> = 2 k $\Omega$                            | •    | V <sub>S+</sub> -270 |                      | - mV              |  |  |
| V.                   | Low output voltage                   | V <sub>s</sub> = $\pm$ 18 V, R <sub>L</sub> = 10 kΩ                            |      | V <sub>s-</sub> +60  |                      |                   |  |  |
| Vol                  | swing                                | $V_{s}$ = $\pm$ 18 V, R <sub>L</sub> = 2 k $\Omega$                            |      | Vs-+250              |                      | - mV              |  |  |
| sc                   | Short-circuit current                | V <sub>s+</sub> = +15 V, V <sub>s-</sub> = -15 V, V <sub>0</sub> = 0 V         |      | ±20                  | ±40                  | mA                |  |  |
| POWER S              | UPPLY                                |                                                                                |      |                      |                      |                   |  |  |
| Vs                   | Operating Supply<br>Voltage          | T <sub>A</sub> = −40°C to +125°C                                               | 3    |                      | 36                   | ۷                 |  |  |
| 1                    | Quiescent current                    | Vs = 5 V                                                                       | •    | 300                  |                      |                   |  |  |
| la                   | (per amplifier)                      | Vs = 36 V                                                                      |      | 375                  | 500                  | — μΑ              |  |  |


CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.


İNEARIN


### **Typical Characteristics**



At  $T_A$  = +25 °C,  $V_s$ = 36 V (±18 V),  $V_{CM}$  =  $V_s/2$ , and  $R_L$  = 10 k $\Omega$  connected to  $V_s/2$ , unless otherwise noted.







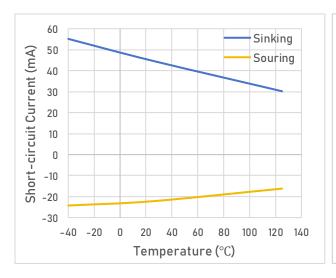



Figure 5. Short-circuit current vs Temperature Vs=30V

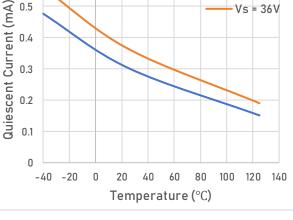



Figure 2. Quiescent Current vs Temperature

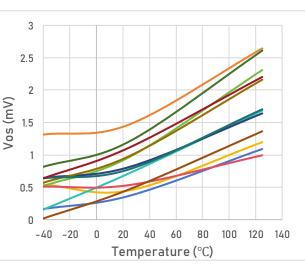



Figure 4. Offset voltage vs Temperature

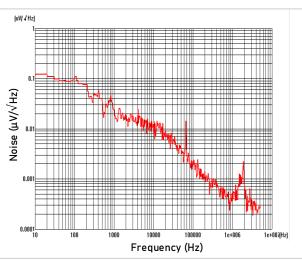
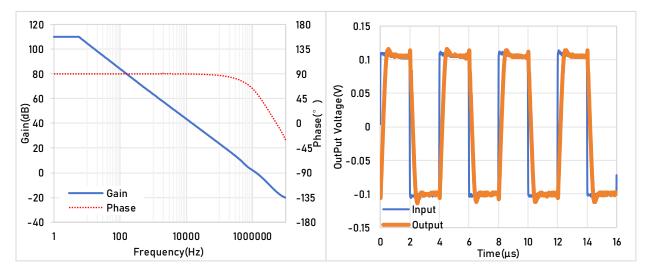
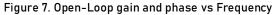
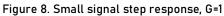






Figure 6. Input Voltage Noise Spectral Density vs Frequency

NEARIN







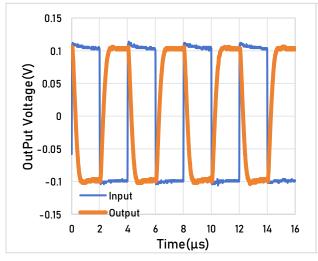



Figure 9. Small signal step response, G= -1

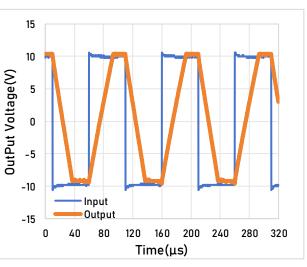



Figure 10. Large signal step response, G= 1

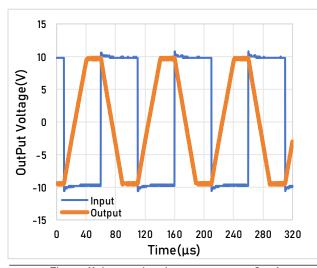



Figure 11. Large signal step response 6= -1 CAUTION: These devices are sensitive to electrostatic discharge, follow proper IC Handling Procedures Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.



P-9

### **Detailed Description**

### **Operating Voltage**

The LTA321 / LTA323 / LTA2904 / LTA2902 family of 36 V General-purpose low power amplifiers is fully specified and ensured for operation from 3 V to 36 V and offers an combination with quiescent supply current of 300  $\mu$  A per amplifier. In addition, and many specifications apply over the industrial temperature range of -40 °C to +125°C, parameters that vary significantly with operating voltages or temperature are illustrated in the Typical Characteristics graphs.

### Maximizing performance through proper layout

To achieve ths maximum performance of the extremely high input impedance and low offset voltage of the LTA321 /LTA323 /LTA2904 /LTA2902 devices, care is needed in laying out the circuit board. The PCB surface must remain clean and free of moisture to avoid leakage currents between adjacent traces. Surface coating of the circuit board reduces surface moisture and provides a humidity barrier, reducing parasitic resistance on the board. The use of guard rings around the comparator inputs further reduces leakage currents. Figure 6 shows proper guard ring configuration and the top view of a surface-mount layout. The guard ring does not need to be a specific width, but it should form a continuous loop around both input. By setting the guard ring voltage equal to the voltage at the non-inverting input, parasitic capacitance is minimized as well. For further reduction of leakage currents, components can be mounted to the PCB using Teflon standoff insulators.

Other potential sources of offset error are thermo-electric voltages on the circuit board. This voltage, also called Seebeck voltage, occurs at the junction of two dissimilar metals and is proportional to the temperature of the junction. The most common metallic junctions on a circuit board are solder-to-board trace and solder-to-component lead. If the temperature of the PCB at one end of the component is different from the temperature at the other end, the resulting Seebeck voltages are not equal, resulting in a thermal voltage error.

This thermocouple error can be reduced by using dummy components to match the thermoelectric error source. Placing the dummy component as close as possible to its partner ensures both Seebeck voltages are equal, thus canceling the thermocouple error. Maintaining a constant ambient temperature on the circuit board further reduces this error. The use of a ground plane helps distribute heat throughout the board and reduces EMI noise pickup.

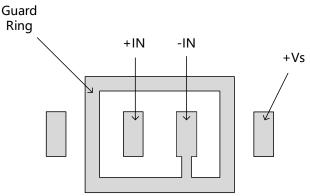
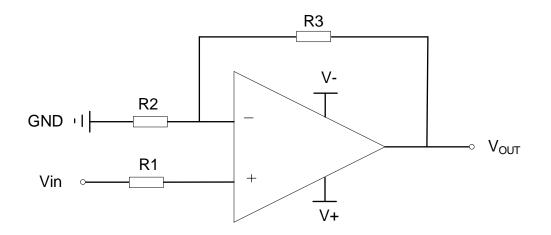



Figure 6: Use a guard ring around sensitive pins



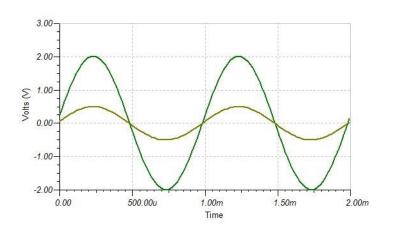
P-11


# LTA321 LTA323 LTA2904 LTA2902 36V General-purpose Low power Amplifiers

### Input and Output coupling

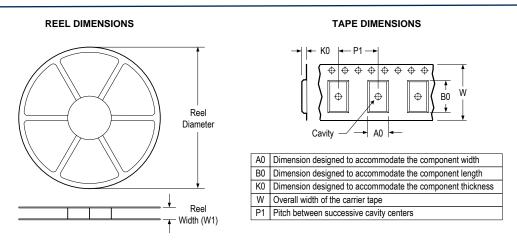
To minimize capacitive coupling, the input and output signal traces should not be parallel. This helps reduce unwanted positive feedback.

# **Typical Application Circuits**

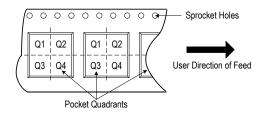

### Non-Inverting Amplifier



Non-inverting Amplifier is one of typical application for an Op-AMP. With Vin to IN+ and  $V_{OUT}$  will be amplified by Equation (1).


$$V_{OUT} = (1 + \frac{R3}{R2}) * V_{IN}$$
 (1)

For example: If V<sub>s</sub> is  $\pm 12$  V, Vin signal requires to scale from  $\pm 0.5$  V to  $\pm 2$  V. Consider to choose Resistors in kilohm range because the input current of amplifier is limited to milliampere range. R1, also known as balance resistance, is usually taken as the parallel resistance value of R2 and R3, used to eliminate bias current errors. In this example, we finally use 9 k $\Omega$  for R1, 12 k $\Omega$  for R2, 36 k $\Omega$  for R3.




CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

### Tape and Reel Information



#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIETATION IN TAPE

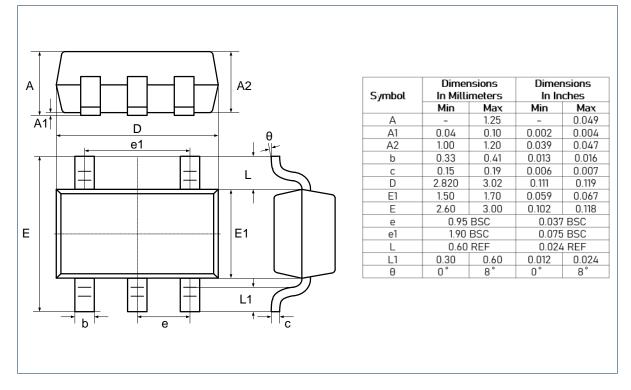


#### \* All dimensions are nominal

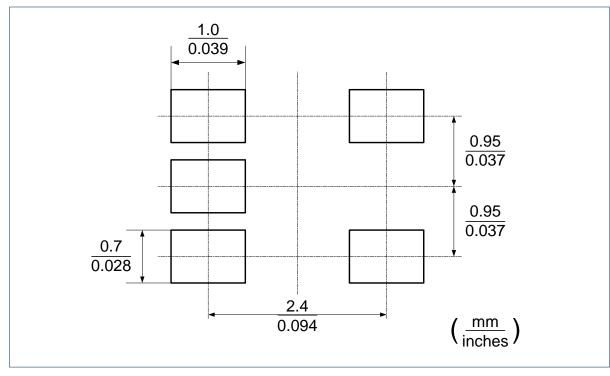
| Device         | Package Type | Pins | SPQ   | Reel<br>Diameter<br>(mm) | Reel<br>Width W1<br>(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin 1<br>Quadrant |
|----------------|--------------|------|-------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|-------------------|
| LTA321JXT5/R6  | SOT23        | 5    | 3 000 | 178                      | 9.0                      | 3.3        | 3.2        | 1.5        | 4.0        | 8.0       | Q3                |
| LTA323JXT5/R6  | S0T23        | 5    | 3 000 | 178                      | 9.0                      | 3.3        | 3.2        | 1.5        | 4.0        | 8.0       | Q3                |
| LTA2904XS8/R8  | SOIC         | 8    | 4 000 | 330                      | 12.4                     | 6.6        | 5.3        | 2.0        | 8.0        | 12.0      | Q1                |
| LTA2904XV8/R6  | MSOP         | 8    | 3 000 | 330                      | 12.4                     | 5.0        | 3.5        | 2.0        | 8.0        | 12.0      | Q1                |
| LTA2904XT8/R6  | TSSOP        | 8    | 3 000 | 330                      | 16                       | 8.5        | 7          | 2.0        | 8          | 1.2       | Q1                |
| LTA2902XS14/R5 | SOIC         | 14   | 2 500 | 330                      | 18                       | 8.5        | 1.1        | 2.0        | 8.5        | 1.6       | Q1                |
| LTA2902XT14/R6 | TSSOP        | 14   | 3 000 | 330                      | 18                       | 8.5        | 1.1        | 2.0        | 8.5        | 1.6       | Q1                |

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

### P-12



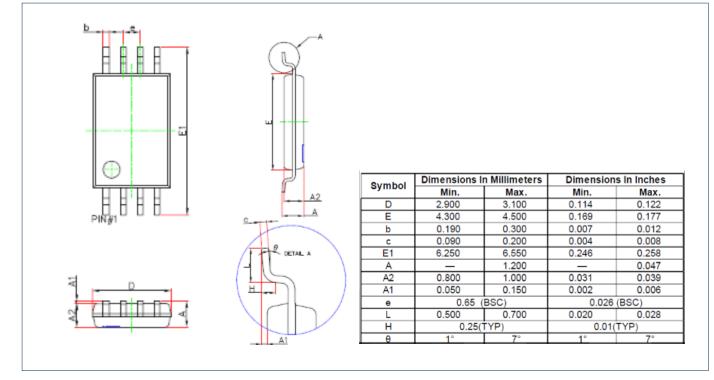

FN1624-29.0 — Data Sheet


İNEARIN

## Package Outlines

DIMENSIONS, SOT23-5L

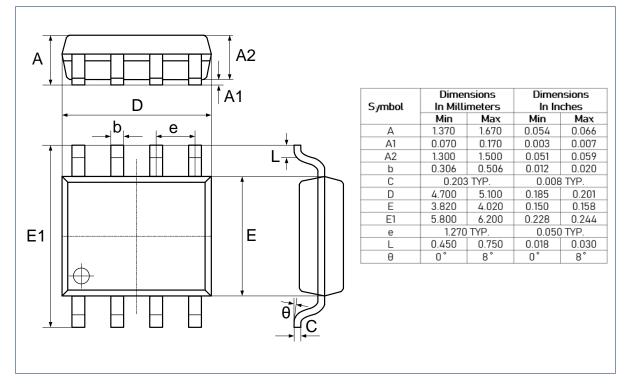



### RECOMMENDED SOLDERING FOOTPRINT, SOT23-5L

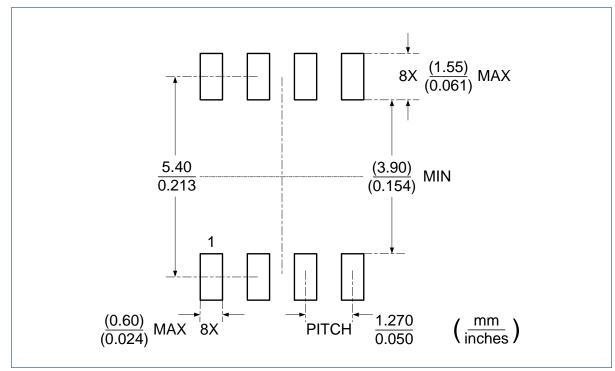




## Package Outlines (Continued)


DIMENSIONS, TSSOP-8L



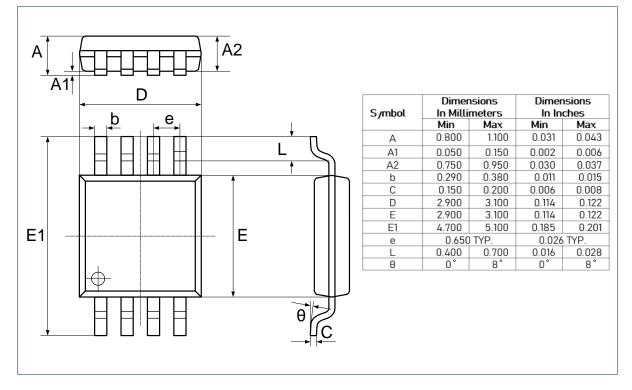



### Package Outlines (Continued)

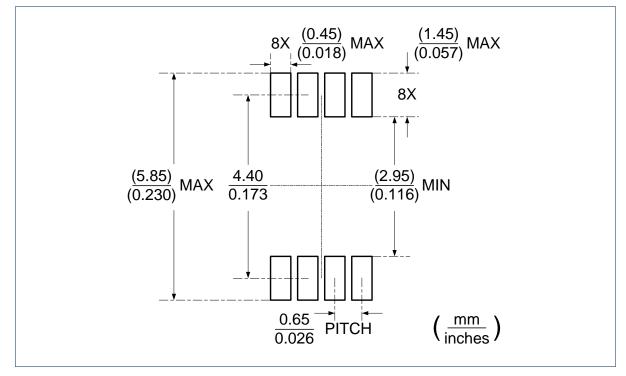
DIMENSIONS, SOIC-8L



#### **RECOMMENDED SOLDERING FOOTPRINT, SOIC-8L**



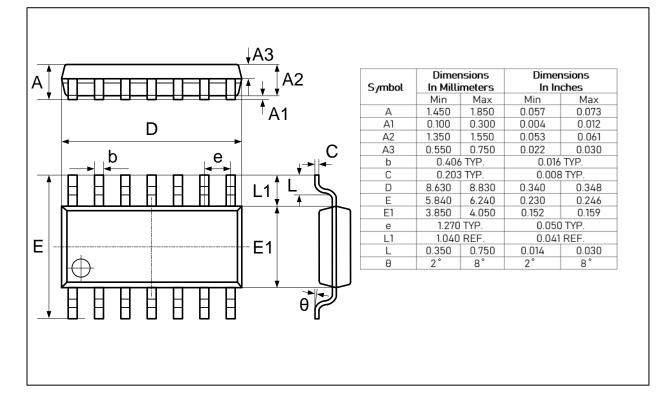

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.



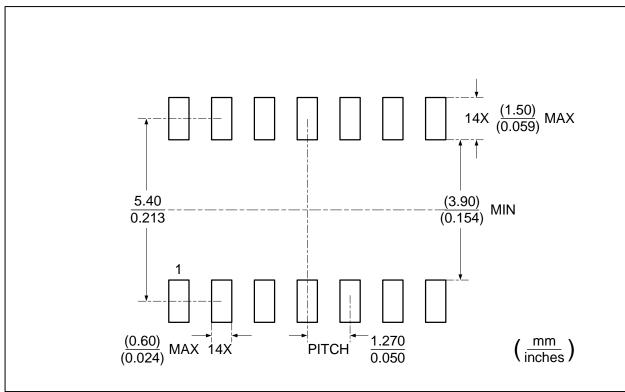

## Package Outlines (Continued)

DIMENSIONS, MSOP-8L



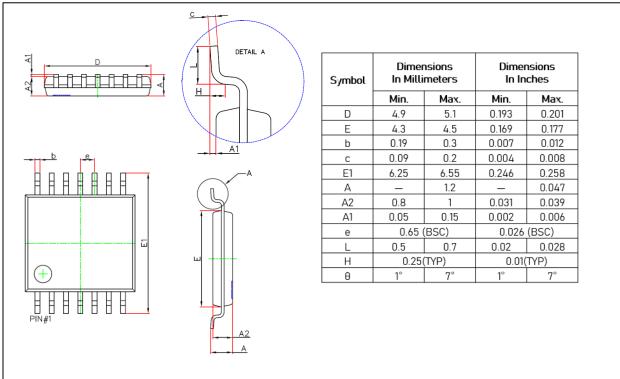

#### RECOMMENDED SOLDERING FOOTPRINT, MSOP-8L



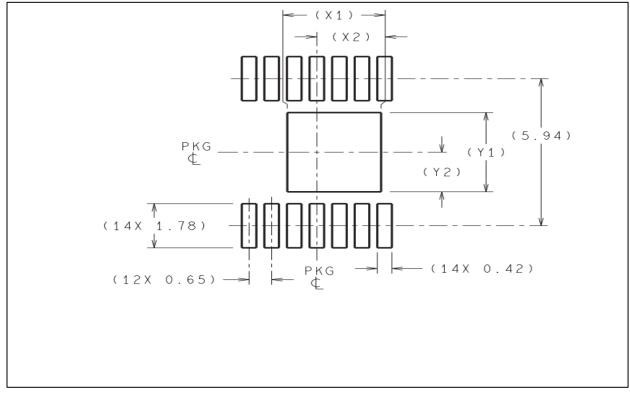

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

### Package Outlines (Continued)

DIMENSIONS, SOIC-14L



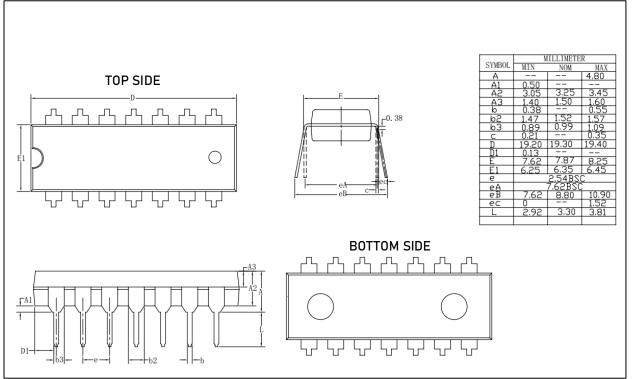

#### RECOMMENDED SOLDERING FOOTPRINT, SOIC-14L



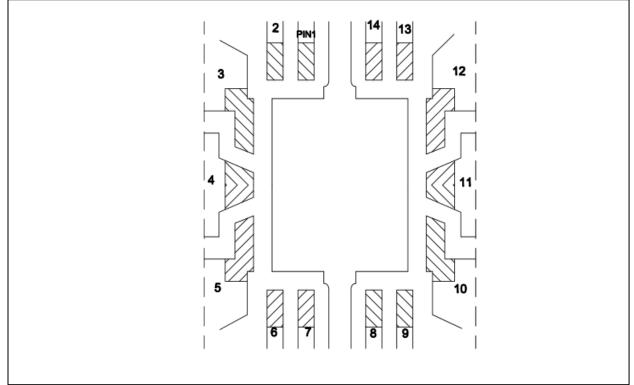

### Package Outlines (Continued)






#### RECOMMENDED SOLDERING FOOTPRINT, TSSOP-14L




CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

### Package Outlines (Continued)

DIMENSIONS, DIP-14L



### RECOMMENDED SOLDERING FOOTPRINT, DIP-14L



CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

### **Important Notice**

Linearin is a global fabless semiconductor company specializing in advanced high-performance high-quality analog/mixed-signal IC products and sensor solutions. The company is devoted to the innovation of high performance, analog-intensive sensor front-end products and modular sensor solutions, applied in multimarket of medical & wearable devices, smart home, sensing of IoT, intelligent industrial & smart factory (industrial 4.0), and automotives. Linearin's product families include widely-used standard catalog products, solution-based application specific standard products (ASSPs) and sensor modules that help customers achieve faster time-to-market products. Go to http://www.linearin.com for a complete list of Linearin product families. For additional product information, or full datasheet, please contact with the Linearin's Sales Department or Representatives.

